CMOS Sensors for the HFT: **Binary Output Chip Performances** M.W. (IPHC-Strasbourg) # OUTLINE - - * detection efficiency - * fake hit rate * single point resolution - Extrapolation to next generations of chips - * consequence of different pixel pitch - * effect of noisy pixels - \Rightarrow Where is the optimum? Conclusion - MIMOSA-16 : \sim fully tested chip with binary output - Evaluate whether architecture (AMS-0.35 OPTO) is mature for large scale chip : - * range of discriminator threshold for which detection efficiency and fake rate are both OK? - * does this range allow for the ambitionned single point resolution? - * what about fakes (\equiv noisy or hot pixels)? - * what about effects of radiation ? \triangleright \triangleright not yet investigated - Try to extrapolate observations to different pixel pitch - * PHASE-1 : 30 μm * *ULTIMATE* : ????????? ### High R.-O. Speed Architecture: 2nd Prototype = MIMOSA-16 #### MIMOSA-16 design features : - ullet AMS-0.35 OPTO translation of MIMOSA-8 \hookrightarrow \sim 11–15 μm epitaxy instead of \lesssim 7 μm - ullet 32 // columns of 128 pixels (pitch: 25 μm) - on-pixel CDS (DS at end of each column) - 24 columns ended with discriminator - 4 sub-arrays : - S1 : like MIMOSA-8 (1.7x1.7 μm^2 diode) - S2 : like MIMOSA-8 (2.4x2.4 μm^2 diode) - S3: S2 with ionising radiation tol. pixels - **S4**: with enhanced in-pixel amplification - (against noise of read-out chain) - Tests of analog part ("20" & "14" μm epitaxy) : - ullet sensors illuminated with $^{55}{ m Fe}$ source and ${ m F}_{r.o.}$ varied up to \gtrsim 150 MHz - ullet measurements of N(pixel), FPN (end of column), pedestal variation, CCE (3x3 pixel clusters) vs $F_{r.o.}$ - lacksquare M.i.p. detection with Si-stip telescope studied at CERN in Sept. '07 igwedge characterisation of digital response : - $\bullet~\pi^-$ beam of \sim 180 GeV/c - measurements of SNR, det. efficiency, fake rate, cluster characteristics, spatial resolution vs discri. threshold ### MIMOSA-16 Beam Test Results (Digital Part) - lacksquare CERN-SPS (\sim 180 GeV π^-) \rightarrowtail results of S4 ("14 μm " epitaxy) - **Read-out time** \sim **50** μs (\sim 1/4 of max. freq. due to DAS limitations) lacksquare Major result $m\mapsto$ at least one pixel architecture validated for next steps : S4 (SNR \sim 16) | Discri. Threshold | det. efficiency | fake rate | sgle pt resolution | |-------------------|---------------------------|---------------------|------------------------| | 4 m V | 99.96 \pm 0.03 (stat) % | \sim 2·10 $^{-4}$ | \sim 4.8–5.0 μm | | 6 m V | 99.88 \pm 0.05 (stat) % | $<$ 10 $^{-5}$ | \sim 4.6 μm | ## MIMOSA-16 Beam Test Results : Eff. vs Fakes #### Investigate whether 1-pixel clutsers or 2-pixel clusters are more appropriate | Nb(pix)/cluster | 1 pixel per cluster | | 2 pixels per cluster | | |-----------------|---------------------|-------------------|----------------------------|-------------------| | Threshold (mV) | Efficiency (%) | Fake rate | Efficiency (%) | Fake rate | | 3.0 ± 0.10 | 99.94 ± 0.04 | 5.51E-03±1.16E-05 | 99.66 ± 0.04 | 5.48E-04±3.66E-06 | | 3.5 ± 0.10 | 99.96 ± 0.03 | 1.30E-03±6.11E-06 | 99.23 ± 0.03 | 3.11E-05±9.46E-07 | | 4.0 ± 0.10 | 99.96 ± 0.03 | 1.94E-04±2.46E-06 | 98.16 ± 0.03 | 1.79E-06±2.36E-07 | | 4.6 ± 0.10 | 99.94 ± 0.03 | 3.82E-05±1.06E-06 | 96.00 ± 0.03 | 7.76E-07±1.51E-07 | | 5.0 ± 0.10 | 99.88 ± 0.05 | 1.53E-05±7.35E-07 | 94.07 ± 0.05 | 1.48E-06±2.28E-07 | | 6.0 ± 0.10 | 99.79 ± 0.07 | 6.29E-06±3.82E-07 | 89.82 ± 0.07 | 6.91E-07±1.27E-07 | | 7.0 ± 0.10 | 99.19 ± 0.13 | 1.30E-06±1.81E-07 | 79.56 ± 0.13 | 5.81E-07±1.21E-07 | | 7.8 ± 0.10 | 98.43 ± 0.19 | 9.35E-07±1.57E-07 | 71.74 ± 0.19 | 5.84E-07±1.24E-07 | | 10.0 ± 0.10 | 94.34 ± 0.41 | 8.12E-07±1.39E-07 | <i>54.03</i> ± <i>0.41</i> | 5.50E-07±1.14E-07 | ^{■ 1-}pixel/cluster with high threshold is more effective >>> what about hot pixels after irradiation ? ⇒ foresee 2-pixel requirement logic, to be activated if necessary after some data taking period - Architecture validated for PHASE-1 (in absence of intense radiation) - ⇒ binary output provides ambitionned single point resolution - Still to do: - * investigate effects of ionising and non-ionising radiation - * (clarify effect of operating temperature?) - **Extrapolation to PHASE-1 and ULTIMATE:** - ** PHASE-1 : \sim 30 μm pitch \rightarrow expected single point resolution \sim 6 μm - st ULTIMATE single point resolution from \sim 4 μm (\lesssim 20 μm pitch) \rightarrowtail \sim 8–9 μm (\sim 35 μm pitch) - **Questions:** - \divideontimes Is a single point resolution of 8–9 μm in one dimension (rectangular pixels) acceptable ? - ← need also to study detection efficiency vs T, rad. dose, etc. - * Several other aspects to investigate ????